Nucleon density distribution of proton drip-line nucleus ¹⁷Ne

K. Tanaka^{1,a}, M. Fukuda¹, M. Mihara¹, M. Takechi¹, T. Chinda¹, T. Sumikama¹, S. Kudo¹, K. Matsuta¹,

T. Minamisono¹, T. Suzuki^{2,b}, T. Ohtubo², T. Izumikawa², S. Momota³, T. Yamaguchi^{4,b}, T. Onishi⁴, A. Ozawa^{4,c}, I. Tanihata⁴, and Zheng Tao⁴

¹ Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

 $^{\rm 2}$ Department of Physics, Niigata University, Niigata 950-2181, Japan

³ Kochi University of Technology, Tosayamada, Kochi 782-8502, Japan

⁴ RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Received: 12 January 2005 / Published online: 2 August 2005 – © Società Italiana di Fisica / Springer-Verlag 2005

Abstract. ¹⁷Ne is one of the candidates for proton halo nuclei. To study the halo structure of ¹⁷Ne, we measured the reaction cross-sections (σ_R) and deduced the density distribution of ¹⁷Ne through the energy dependence of σ_R . From the deduced density, it is found that ¹⁷Ne has a long density tail which is consistent with the picture of two valence protons of 17 Ne occupying the $2s_{1/2}$ orbital.

PACS. 25.60.Dz Interaction and reaction cross-sections

1 Introduction

It is interesting to study the proton halo structures that are less known compared to the neutron halo structures, in order to obtain a detailed understanding of the mechanism of halo formation in loosely bound nuclei. While several neutron halo nuclei have been found and well studied in the p-shell $(e.g.$ ¹¹Li [\[1\]](#page-1-0) $)$ and sd-shell $(e.g.$ ¹⁴Be, $17B$ [\[2\]](#page-1-1)) regions, only one proton-halo nucleus, namely ${}^{8}B$, has been reported [\[3\]](#page-1-2). The ground state of proton drip-line nucleus ${}^{17}Ne(I^{\pi} = 1/2^{-})$ was suggested to have a proton halo structure, on the basis that the interaction crosssection (σ_I) for ¹⁷Ne at relativistic energies are larger than those for the mirror nucleus ^{17}N [\[4\]](#page-1-3). Several experiments have been performed to verify the hypothesis but the results conflict with each other $[5]$. If, indeed, ¹⁷Ne has a proton halo structure, it will be the first proton-rich nucleus in the sd-shell region to have a two-proton halo structure.

Another intriguing question that could be answered by the study on 17 Ne concerns the possibility of existence of a new magic number $Z = 16$. The new magic number $N = 16$ has been discovered for some neutron-rich nuclei [\[6\]](#page-1-5). The orbital that two valence protons could occupy is either the $1d_{5/2}$ or the $2s_{1/2}$, and it is not easy to discriminate the two possibilities in an experiment. If the two valence protons mainly occupy $2s_{1/2}$, for which the centrifugal barrier becomes low, the proton density distribution for 17 Ne will have a long tail. In this case, the level energy of $2s_{1/2}$ should be lower than $1d_{5/2}$, which can lead to the occurrence of magic number 16 $\overline{6}$.

To study the structure of ¹⁷Ne, we have measured the reaction cross-sections (σ_R) at several tens of A MeV to deduce the density distribution of 17 Ne. In this energy range, the nucleon-nucleon total cross-section (σ_{NN}) be-comes large [\[7\]](#page-1-6), therefore σ_R becomes sensitive to the dilute-density at the nuclear surface.

2 Experiment

The experiment was carried out at the RIKEN Accelerator Research Facility. A primary beam of 135 A MeV ²⁰Ne provided by the RIKEN Ring Cyclotron was impinged on a ⁹Be production target to produce a ¹⁷Ne beam. The ¹⁷Ne secondary beam was separated from other reaction products through the RIKEN Projectile fragment Separator. The σ_R for ¹⁷Ne on ⁹Be, ¹²C and ²⁷Al targets at 64 A MeV and 42 A MeV were measured by means of the transmission method to within 2% accuracy.

3 Density distribution

In this study, the σ_R is related to a density distribution through the optical limit of the Glauber theory (OL). We

Conference presenter; Present address: RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;

e-mail: ktanaka@riken.jp

^b Present address: Department of Physics, Saitama University, Saitama, Saitama, 338-8570, Japan.

Present address: Department of Physics, Tsukuba University, Tsukuba, Ibaragi, 305-8571, Japan.

Target	Energy $(A \text{ MeV})$	σ_I (mb) [4]	σ_R (mb)
Be	700	$968 + 45$	
	64		1249 ± 25
	42		$1467 + 33$
\mathcal{C}	680	$1090 + 76$	
	620	$1044 + 31$	
	64		$1331 + 27$
	42		$1541 + 31$
Al	670	$1412 + 224$	
	64		$1795 + 36$
	43		2012 ± 40

Table 1. Reaction and interaction cross-sections for 17 Ne used in the fitting procedure.

deduced the density distribution of 17 Ne via a fitting procedure using the present σ_R data and the σ_I data at high energies [\[4\]](#page-1-3). The fitting procedures are as follows. First, a calculation is performed to obtain an initial value for σ_R (σ_R^{calc}), using the OL with an assumed density distribution. Next, the σ_R^{calc} is compared with the experimental σ_R . If σ_R deviates from the experimental σ_R , the assumed density distribution is adjusted, and the calculation is repeated to obtain a new σ_R^{calc} . Repeating these procedures, the best-fit density distribution of 17 Ne was obtained. In our calculation, we assumed the harmonic-oscillator (HO) type function plus single-particle densities as a functional form of the proton density. The single-particle density was calculated with the Woods-Saxon potential, the Coulomb and centrifugal barriers. The HO function with the same width was assumed for the neutron density. The free parameters were the width of the HO function, the separation energy of valence protons, and the fractions of $1d_{5/2}$ and $2s_{1/2}$ $2s_{1/2}$ $2s_{1/2}$ orbitals. Table 1 shows the σ_I and σ_R for ¹⁷Ne used in the present fitting.

In deducing the density distribution, we have considered the following three corrections. First, we corrected the σ_R calculated with the OL. In the lower energy region, as in the case of the present experiment, there is a discrepancy between the experimental σ_R and the one calculated with the OL even for stable nuclei. This discrepancy was corrected by using the ratio of the experimental σ_R to that obtained with the OL calculation for stable nuclei. In the present analysis, the σ_R calculated with the OL were always corrected by multiplying by this ratio [\[8\]](#page-1-8).

Secondly, we considered the effect of the few-body approximation of Glauber theory (FB), which was proposed by Ogawa et al. and Al-Khalili et al. [\[9\]](#page-1-9), because the FB is more appropriate than the OL for dilute densities. Since it is difficult to apply FB, instead of OL, directly to the fitting procedure, correction for the FB effect was done as follows. The experimental σ_R were multiplied by the ratio of σ_R with the FB to that calculated with the OL. Here, both σ_R were calculated using the same density distribution deduced through the OL fitting to the experimental σ_R . Then these few-body corrected σ_R (σ_R^{FB}) were used in the fitting with the OL again. Repeating this procedure,

Fig. 1. Density distribution of 17 Ne. The error indicated contains the experimental and also the ambiguity of the fitting method.

 $\sigma_R^{\rm FB}$ and the density distribution converged into the final results.

Lastly, correction for the effect of the Fermi motion was also taken into account in the FB calculation, which is considered to be important at low energies because of a finite reaction time neglected in the Glauber theory.

Figure [1](#page-1-10) shows the deduced density distribution of ¹⁷Ne. For comparison, the theoretical densities calculated by Kitagawa et al. [\[10\]](#page-1-11) with the Hartree-Fock model, in which two valence protons occupy the $2s_{1/2}$ orbital or $1d_{5/2}$ orbital, are also shown in this figure. The deduced density distribution of 17 Ne has a long density tail, consistent with the theoretical one for which two valence protons are in the $2s_{1/2}$ orbital. This fact implies the level inversion of $2s_{1/2}$ and $1d_{5/2}$, and therefore, the possible occurrence of the magic number 16 on the proton-rich side.

References

- 1. I. Tanihata et al., Phys. Rev. lett. 55, 2676 (1985).
- 2. T. Suzuki et al., Nucl. Phys. A 658, 313 (1999).
- 3. W. Schwab et al., Z. Phys. A 350, 283 (1995); J.H. Kelly et al., Phys. Rev. Lett. 77, 5020 (1996); M. Fukuda et al., Nucl. Phys. A 656, 209 (1999).
- 4. A. Ozawa et al., Phys. Lett. B 334, 18 (1994).
- 5. R.E. Warner et al., Nucl. Phys. A 635, 292 (1998); R. Kanungo et al., Phys. Lett. B 571, 21 (2003).
-
- 6. A. Ozawa et al., Phys. Rev. Lett. $\mathbf{84}$, 24 (2000).
7. Particle Data Group Phys. Lett. B **592**, 1 (2004). Particle Data Group Phys. Lett. B 592, http://pdg.lbl.gov/xsect/contents.html.
- 8. M. Takechi et al., these proceedings; M. Takechi et al., in Proceedings of the International Symposium A New Era of Nuclear Structure Physics, 19-22 November 2003, Niigata, Japan (World Scientific, 2004) p. 367.
- 9. Y. Ogawa, et al., Nucl. Phys. A 543, 722 (1992); J.S. Al-Khalili, et al., Phys. Rev. C 54, 1843 (1996).
- 10. H. Kitagawa et al., Z. Phys. A 358, 381 (1997).